Determination of the bending rigidity of graphene via electrostatic actuation of buckled membranes.

نویسندگان

  • Niklas Lindahl
  • Daniel Midtvedt
  • Johannes Svensson
  • Oleg A Nerushev
  • Niclas Lindvall
  • Andreas Isacsson
  • Eleanor E B Campbell
چکیده

Classical continuum mechanics is used extensively to predict the properties of nanoscale materials such as graphene. The bending rigidity, κ, is an important parameter that is used, for example, to predict the performance of graphene nanoelectromechanical devices and also ripple formation. Despite its importance, there is a large spread in the theoretical predictions of κ for few-layer graphene. We have used the snap-through behavior of convex buckled graphene membranes under the application of electrostatic pressure to determine experimentally values of κ for double-layer graphene membranes. We demonstrate how to prepare convex-buckled suspended graphene ribbons and fully clamped suspended membranes and show how the determination of the curvature of the membranes and the critical snap-through voltage, using AFM, allows us to extract κ. The bending rigidity of bilayer graphene membranes under ambient conditions was determined to be 35.5−15.0 +20.0 eV. Monolayers are shown to have significantly lower κ than bilayers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoelectromechanical Systems from Carbon Nanotubes and Graphene

Carbon nanotubes and graphene have many interesting properties. To exploit the properties in applications their synthesis and incorporation in devices has to be understood and controlled. This thesis is based on experimental studies on synthesis of carbon nanotubes and fabrication of nanoelectromechanical systems from carbon nanotubes and graphene. Vertically aligned nanotube arrays with height...

متن کامل

Influence of particle shape on bending rigidity of colloidal monolayer membranes and particle deposition during droplet evaporation in confined geometries.

We investigate the influence of particle shape on the bending rigidity of colloidal monolayer membranes (CMMs) and on evaporative processes associated with these membranes. Aqueous suspensions of colloidal particles are confined between glass plates and allowed to evaporate. Confinement creates ribbonlike air-water interfaces and facilitates measurement and characterization of CMM geometry duri...

متن کامل

Nonlinear static and dynamic behaviors of a microresonator under discontinuous electrostatic actuation

This article studied static deflection, natural frequency and nonlinear vibration of a clamped-clamped microbeam under discontinues electrostatic actuation. The electrostatic actuation was induced by applying AC-DC voltage between the microbeam and electrode plate. In contrast to previous works, it was assumed that length of the electrode plate was smaller than that of the microbeam. In additio...

متن کامل

Tracking and Shape Control of a Micro-cantilever using Electrostatic Actuation

In this paper the problems of state estimation, tracking control and shape control in a micro-cantilever beam with nonlinear electrostatic actuation are investigated. The system’s partial differential equation of motion is converted into a set of ordinary differential equations by projection method. Observabillity of the system is proven and a state estimation system is designed using extended ...

متن کامل

Stability of dipolar fluid membranes

We determine the electrostatic contribution to the elastic bending moduli of an insulating fluid membrane composed of either permanent, or field induced dipoles oriented along the normal directors of the surface. Using Debye-Hfickel screening theory, we show that in contrast to the uniformly charged membrane the bending rigidity becomes softened by the electrostatic interaction.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 12 7  شماره 

صفحات  -

تاریخ انتشار 2012